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Deep Fakes: Driving Video, Static Input



Deep Fakes: Video/Voice Inpainting



Creating Games with Real Footage



A Bit of History
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Image and Video Generation
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Diverse Smile Video Generation

• Wang, et al., “Every Smile is Unique: Landmark-Guided Diverse Smile Generation”, in CVPR 2018

• Wang, et al., “Learning How to Smile: Expression Video Generation with Conditional Adversarial Recurrent 

Nets”, in IEEE Transactions on Multimedia, 22(11):2808-2819, Nov. 2020 



Landmark-Guided Diverse Smile Generation 

Challenges
• Sequence Generation conditioned

on priors (i.e., input neutral face
and smile label)
• Conditional Recurrent Neural

Network

• One-to-Many
• Push-Pull Loss

• Preserve the identity
• Landmark Sequence→ Real

Face via U-Net

Mode 1

Mode2

(b) Generate K different sequences of smiles

(a) Generate sequence of smiles conditioned on labels



Landmark-Guided Diverse Smile Generation 
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Landm ark Sequence to Video Translat ion

• (left) encode the landmark image and generates a sequence of landmark 
embeddings according to the conditioning label

• (middle) generates K different landmark embedding sequences 
• (right) translate each of the sequences into a face video

Landmark-Guided Diverse Smile Generation 



(1)  Conditional Recurrent Neural Network
• y0 => initial input neutral face landmark image
• xi => generated face landmark images
• LSTM is the recurrent unit  receiving as input the concatenation 

of ht-1 and the embedding of conditioning label c

Landmark-Guided Diverse Smile Generation 



(2) One-to-Many Mapping: Push & Pull loss

Landmark-Guided Diverse Smile Generation 
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(3) Landmark Sequence to Video Generation via U-Net

Skip Connection allows texture passing from source to target to preserve the identity

Landmark-Guided Diverse Smile Generation 
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Sequence

Bottom

Mode 1

Mode 2

Mode 3

Multi-Mode

Landmark-Guided Diverse Smile Generation 



Original
Sequence

CMM-Net

CRA-Net

Video GAN

(d) Posed Smile with Glasses(c) Spontaneous Smile with Glasses

(a) Spontaneous Smile (b) Posed Smile

Original
Sequence

CMM-Net

CRA-Net

Video GAN

Comparison with the state-of-the-art

Landmark-Guided Diverse Smile Generation 





Pose-based Human Image Generation

• Siarohin, et al.,  “Appearance and Pose-Conditioned Human Image Generation using Deformable GANs”, PAMI, 

43(4):1156-1171, April 2021

https://github.com/AliaksandrSiarohin/pose-gan

https://github.com/AliaksandrSiarohin/pose-gan


Pose-based Human Image Generation

Ground Truth

Prediction

Real or Fake



Pose-based Human Image Generation

(a) typical “rigid” scene generation task: the local structures of conditioning and 
output image local structures are well aligned

(b) deformable-object generation task: the input and output are not spatially aligned



Pose-based Human Image Generation



Pose-based Human Image Generation

We need a deformation model



Pose-based Human Image Generation

• For each specific body part, compute an affine transformation fh

• Use fh to “move” the corresponding feature-map content



Pose-based Human Image Generation

Target 
Stream

target pose
heat map 

using gaussian 
blurring

feature maps 
“shuttled” by skip 
connections from 

the Hb stream

feature maps directly 
obtained using up-

convolutional filters 
applied to the 

previous-layer maps



Pose-based Human Image Generation

Target 
Stream

Source 
Stream

deformed 
tensors d(F) 

“shuttled” by  
deformable 

skip 
connections 
from  (xa,Ha) 

stream

• joint locations in xa and Ha are spatially aligned (by construction)
• in Hb the joint locations may be far apart from xa

• Hence, Hb is not concatenated with the other input tensors



Pose-based Human Image Generation

Target 

Stream

Source 

Stream



xa Target pose GT  Baseline DSC Full

Qualitative results on the Market-1501 dataset

Conditional Image Generation



xa Target pose GT Baseline DSC Full

Qualitative results on the DeepFashion dataset



Badly generated images
• errors of the pose estimation

• ambiguity of the pose estimation

• rare object appearance

• rare poses



Image Animation

• Siarohin, et al., “Animating Arbitrary Objects via Deep Motion Transfer”, CVPR19

• Siarohin, et al., “First Order Motion Model for Image Animation”, NeurIPS19

https://github.com/AliaksandrSiarohin/first-order-model

https://github.com/AliaksandrSiarohin/first-order-model


Image Animation: Appearance or Motion Transfer?

Appearance transfer
Detect pose in each frame of the driving video

Apply our pose-base image generator with the source image and each
detected pose

Problems: requires a detector, does not work when the shapes of the object are 
different  (ie. short to tall persons) => Use Unsupervised Transfer Motion

1 8 / 3 1



Image Animation with MOviNg KEYpoints 

1 8 / 3 1

-

Monkey-Net



Image Animation with MOviNg KEYpoints 

1 8 / 3 1

-

Again, we have an alignment problem

Monkey-Net



Image Animation with MOviNg KEYpoints 

1 8 / 3 1

• Monkey-Net has a motion-specific keypoint detector Δ, a motion prediction network M, 
and an image generator G (reconstructs the image x′ from the keypoint positions Δ(x) and 
Δ(x′)); Optical flow computed by M is used by G to handle misalignments between x and x′

• The model is learned with a self-supervised learning scheme

-

Monkey-Net



Image Animation: Motion Prediction

1 8 / 3 1

From the appearance of the first frame and the keypoints motion, the network M predicts a 
mask for each keypoint and the residual motion



Image Animation Generation

At testing time the model generates a video 
with the object appearance of the source 
image but with motion from driving video: 
• transfer the motion between the  source 

image and each driving frame
• provide the generator the relative  

difference between keypoints





Motion-supervised Co-Part Segmentation

• Siarohin, et al., “Motion Supervised Co-Part Segmentation”, ICPR20

https://github.com/AliaksandrSiarohin/motion-cosegmentation

https://github.com/AliaksandrSiarohin/motion-cosegmentation


Self-supervised Co-Part Segmentation

Leverage motion info to train a segmentation network without annotation 
• At training, use frame pairs (source and target) extracted from the same video => predict 

segments in target that can be combined with a motion representation between the two 
frames to reconstruct the target frame

• At inference, use the trained segmentation model  to predict object parts segments 



Self-supervised Co-Part Segmentation

• Segmentation Module predicts the segmentation maps YS and YT, and the  affine 
motion parameters

• Reconstruction Module: (1) computes a background visibility mask V and an optical 
flow F; (2) reconstructs the target frame XT by warping the features of the source frame 
XS and masking occluded features



Video Generation



Playable Video Generation

• Menapace, et al., “Playable Video Generation”, CVPR21

https://github.com/willi-menapace/PlayableVideoGeneration

https://github.com/willi-menapace/PlayableVideoGeneration


Playable Video Generation

• Consider a set of videos depicting an agent acting in an environment
• Differently from other methods that use frame by frame action annotations, we assume 

no annotation is present



Playable Video Generation

• Learn a model that represents the observed environment. 
• Allow the user to input actions to the model through a controller at test time



• Produce a video where the agent acts according to the actions specified by the user

Playable Video Generation
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