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Deep Fakes: Driving Video, Static Input
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Deep Fakes: Video/Voice Inpainting
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Creating Games with Real Footage

The player moves to the left corner waiting for the serve

The player serves the ball to the left corner of the field



A Bit of History
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A Bit of History

... about 2019



A Bit of History

... howadays



Im age and Video Generation
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Diverse Smile Video Generation

* Wang, et al., “Every Smile is Unique: Landmark-Guided Diverse Smile Generation”, in CVPR 2018

* Wang, et al., “Learning How to Smile: Expression Video Generation with Conditional Adversarial Recurrent
Nets” in IEEE Transactions on Multimedia, 22(11):2808-2819, Nov. 2020



Landmark-Guided Diverse Smile Generation

Conditioning label (posed, creepy,
nervous, spontaneous, over-reacting) +

Challenges

* Sequence Generation conditioned
on priors (i.e., input neutral face
and smile label)

e Conditional Recurrent Neural
Network

* One-to-Many
e Push-Pull Loss
* Preserve the identity

* Landmark Sequence = Real
Face via U-Net

CAR-Net

Conditional
Adversarial
Recurrent
Network

Neutrlface

(a) Generate sequence of smiles conditioned on labels

Mode 1

Mode2

(b) Generate K different sequences of smiles



Landmark-Guided Diverse Smile Generation

Output Multiple Mode
Generated Expression Videos
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Landmark-Guided Diverse Smile Generation
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* (left) encode the landmark image and generates a sequence of landmark
embeddings according to the conditioning label

e (middle) generates K different landmark embedding sequences

 (right) translate each of the sequences into a face video



Landmark-Guided Diverse Smile Generation
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(1) Conditional Recurrent Neural Network
* yY=>initial input neutral face landmark image
* X =>generated face landmark images
 LSTM is the recurrent unit receiving as input the concatenation
of h,; and the embedding of conditioning label c

concate




Landmark-Guided Diverse Smile Generation
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(2) One-to-Many Mapping: Push & Pull loss



Landmark-Guided Diverse Smile Generation

Skip Connection allows texture passing from source to target to preserve the identity
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(3) Landmark Sequence to Video Generation via U-Net



Multi-Mode

Landmark-Guided Diverse Smile Generation

i A e A R R R R FEhCE e T
= BICEERECIPERE P it flanze iz te flwize e L TN T R ] i H TN TR | e T |
x 5 B ; 2 - - - x E . : ; E
1 A -
b -t = -
yi- i Bi= i = w - S o
s .. ' . ' . ' . ' - [ . ' - ' -
s e ame e e IR E R B e e IR T e e
: e - T - EnH 1 i i 3 i
= It It It hidea S B Liva

s | auamen | swedees | sesmsy | s | s | aeess | s
E S T T R PP R FTR I M el e LT FEIRr e T L P T L TT T T LT TR T T
Bottom T | 4 D ] : : : : :
N AR : : :
4 L e i < i e o

rigina
equence
Mode
Mode




Landmark-Guided Diverse Smile Generation

Comparison with the state-of-the-art
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(a) Spontaneous Smile (b) Posed Smile
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Sequence

(c) Spontaneous Smile with Glasses (d) Posed Smile with Glasses



Example 1: Neutral -> Smile -> Neutral

Speed: 121fps




Pose-based Human Image Generation

» Siarohin, et al., “Appearance and Pose-Conditioned Human Image Generation using Deformable GANs”, PAMI,

43(4):1156-1171, April 2021

https://eithub.com/AliaksandrSiarohin/pose-gan



https://github.com/AliaksandrSiarohin/pose-gan

Pose-based Human Image Generation
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Pose-based Human Image Generation

(a) Aligned task (b) Unaligned task

(a) typical “rigid” scene generation task: the local structures of conditioning and
output image local structures are well aligned
(b) deformable-object generation task: the input and output are not spatially aligned



Pose-based Human Image Generation




Pose-based Human Image Generation

We need a deformation model



Pose-based Human Image Generation
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For each specific body part, compute an affine transformation f,
Use f, to “move” the corresponding feature-map content



Pose-based Human Image Generation
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Stream

target pose

| eat map feature maps feature maps directly

using gaussian  “shuttled” by skip obtained using up-
blurring connections from  convolutional filters

the H, stream applied to the

previous-layer maps



Pose-based Human Image Generation
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deformed
Source -~ tensors d(F)
Stream “shuttled” by
deformable
skip
* joint locations in x, and H, are spatially aligned (by construction) connections
* in H, the joint locations may be far apart from x, from (x_,H.)

* Hence, H, is not concatenated with the other input tensors stream



Pose-based Human Image Generation
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Conditional Image Generation

Xa

Qualitative results on the Market-1501 dataset



GT Baseline DSC Full

Qualitative results on the DeepFashion dataset



Badly generated images

e errors of the pose estimation

* ambiguity of the pose estimation
* rare object appearance

* rare poses




lmage Animation

e Siarohin, et al., “Animating Arbitrary Objects via Deep Motion Transfer”, CVPR19

e Siarohin, et al., “First Order Motion Model for Image Animation”, NeurlPS19

https://github.com/AliaksandrSiarohin/first-order-model



https://github.com/AliaksandrSiarohin/first-order-model

Image Animation: Appearance or Motion Transfer?

Appearance transfer
Detect pose in each frame of the driving video

Apply our pose-base image generator with the source image and each
detected pose
Problems: requires a detector, does not work when the shapes of the object are
different (ie. short to tall persons) => Use Unsupervised Transfer Motion



Image Animation with MOvViNg KEYpoints

Monkey-Net



Image Animation with MOvViNg KEYpoints

Monkey-Net

Again, we have an alighment problem



Image Animation with MOviNg KEYpoints
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Monkey-Net

Monkey-Net has a motion-specific keypoint detector A, a motion prediction network M,
and an image generator G (reconstructs the image x’ from the keypoint positions A(x) and
A(x')); Optical flow computed by M is used by G to handle misalignments between x and x’

The model is learned with a self-supervised learning scheme



Image Animation: Motion Prediction

From the appearance of the first frame and the keypoints motion, the network M predicts a
mask for each keypoint and the residual motion



Image Animation Generation

Driving

Video

ource
mage

Generated

Video

Monkey-Net ﬁ

Monkey-Net >

Monkey-Net m

At testing time the model generates a video

with the object appearance of the source

image but with motion from driving video:

* transfer the motion between the source
image and each driving frame

e provide the generator the relative
difference between keypoints



Learned Keypoints




Motion-supervised Co-Part Segmentation

« Siarohin, et al., “Motion Supervised Co-Part Segmentation”, ICPR20

https://github.com/AliaksandrSiarohin/motion-cosegmentation



https://github.com/AliaksandrSiarohin/motion-cosegmentation

Self-supervised Co-Part Segmentation

Lource
Frame
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larget Frame

Leverage motion info to train a segmentation network without annotation

e Attraining, use frame pairs (source and target) extracted from the same video => predict
segments in target that can be combined with a motion representation between the two
frames to reconstruct the target frame

 Atinference, use the trained segmentation model to predict object parts segments

A

Segmentation [

Segmentation

Target
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Self-supervised Co-Part Segmentation
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* Segmentation Module predicts the segmentation maps Y. and Y;, and the affine
motion parameters

e Reconstruction Module: (1) computes a background visibility mask V and an optical
flow F; (2) reconstructs the target frame X; by warping the features of the source frame
X and masking occluded features



Tai-Chi-HD
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Playable Video Generation

* Menapace, et al., “Playable Video Generation”, CVPR21

https://github.com/willi-menapace/PlayableVideoGeneration



https://github.com/willi-menapace/PlayableVideoGeneration

Playable Video Generation

Unlabeled videos

g

Eaining

* Consider a set of videos depicting an agent acting in an environment
* Differently from other methods that use frame by frame action annotations, we assume
no annotation is present



Playable Video Generation

Training Test

 Learn a model that represents the observed environment.
* Allow the user to input actions to the model through a controller at test time



Playable Video Generation

Unlabeled videos

Training

* Produce a video where the agent acts according to the actions specified by the user
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