

Cross-modal understanding and generation of multimodal content

NICU SEBE

Univ. of Trento niculae.sebe@unitn.it

Collaborators: Xavier Alameda-Pineda, Stephane Lathuiliere, Willi Menapace, Elisa Ricci, Subhankar Roy, Aliaksandr Siarohin, Hao Tang, Sergey Tulyakov, etc.

Deep Fakes: Driving Video, Static Input

Deep Fakes: Video/Voice Inpainting

Creating Games with Real Footage

The player moves to the left corner waiting for the serve

The player serves the ball to the left corner of the field

A Bit of History

... about 2018

... about 2008

A Bit of History

... about 2019

A Bit of History

... nowadays

Image and Video Generation

Deep Generative Models for Image/Video Generation & Animation

GT

Full

Arbitrary Object Animation with/without 3D Modeling

Control Camera

Diverse Smile Video Generation

- Wang, et al., "Every Smile is Unique: Landmark-Guided Diverse Smile Generation", in CVPR 2018
- Wang, et al., "Learning How to Smile: Expression Video Generation with Conditional Adversarial Recurrent Nets", in IEEE Transactions on Multimedia, 22(11):2808-2819, Nov. 2020

(a) Generate sequence of smiles conditioned on labels

(b) Generate K different sequences of smiles

Challenges

- Sequence Generation conditioned on priors (i.e., input neutral face and smile label)
 - Conditional Recurrent Neural Network
- One-to-Many
 - Push-Pull Loss
- Preserve the identity
 - Landmark Sequence → Real Face via U-Net

- (left) encode the landmark image and generates a sequence of landmark embeddings according to the conditioning label
- (middle) generates K different landmark embedding sequences
- (right) translate each of the sequences into a face video

- (1) Conditional Recurrent Neural Network
 - y⁰ => initial input neutral face landmark image
 - xⁱ => generated face landmark images
 - LSTM is the recurrent unit receiving as input the concatenation of h_{t-1} and the embedding of conditioning label c

(2) One-to-Many Mapping: Push & Pull loss

Skip Connection allows texture passing from source to target to preserve the identity

(3) Landmark Sequence to Video Generation via U-Net

Multi-Mode

Original Sequence						1	10-0	25	-	1	2	25	25
Bottom			in an Miria			1	10-0	100	(10 0	(10 0	10	10	10
Mode 1						E.	(10 g)	(10 g)	(10 g)	10	9	40	4 9
Mode 2	- 1995- - 1995-					E	10-01	10-01	10	10	10-0	10	10
Mode 3							(10 g	100	(10 0)	1	(10 g)	(10 0)	40 0

Comparison with the state-of-the-art

(c) Spontaneous Smile with Glasses

(d) Posed Smile with Glasses

Example 1: Neutral -> Smile -> Neutral Speed: 12fps

Siarohin, et al., "Appearance and Pose-Conditioned Human Image Generation using Deformable GANs", PAMI, 43(4):1156-1171, April 2021

https://github.com/AliaksandrSiarohin/pose-gan

Ground Truth

- (a) typical "rigid" scene generation task: the local structures of conditioning and output image local structures are well aligned
- (b) deformable-object generation task: the input and output are not spatially aligned

We need a deformation model

- For each specific body part, compute an affine transformation f_h
- Use f_h to "move" the corresponding feature-map content

- joint locations in x_a and H_a are spatially aligned (by construction)
- in H_b the joint locations may be far apart from x_a
- Hence, H_b is not concatenated with the other input tensors

deformed tensors d(F) "shuttled" by deformable skip connections from (x_a,H_a) stream

Conditional Image Generation

Qualitative results on the Market-1501 dataset

Qualitative results on the DeepFashion dataset

Badly generated images

- errors of the pose estimation
- ambiguity of the pose estimation
- rare object appearance
- rare poses

Image Animation

- Siarohin, et al., "Animating Arbitrary Objects via Deep Motion Transfer", CVPR19
- Siarohin, et al., "First Order Motion Model for Image Animation", NeurIPS19

https://github.com/AliaksandrSiarohin/first-order-model

Image Animation: Appearance or Motion Transfer?

Appearance transfer

Detect pose in each frame of the driving video

Apply our pose-base image generator with the source image and each detected pose

Problems: requires a detector, does not work when the shapes of the object are different (ie. short to tall persons) => **Use Unsupervised Transfer Motion**

Image Animation with MOviNg KEYpoints

Image Animation with MOviNg KEYpoints

Again, we have an alignment problem

Image Animation with MOviNg KEYpoints

- Monkey-Net has a motion-specific keypoint detector Δ, a motion prediction network M, and an image generator G (reconstructs the image x' from the keypoint positions Δ(x) and Δ(x')); Optical flow computed by M is used by G to handle misalignments between x and x'
- The model is learned with a self-supervised learning scheme

Image Animation: Motion Prediction

From the appearance of the first frame and the keypoints motion, the network M predicts a mask for each keypoint and the residual motion

Image Animation Generation

At testing time the model generates a video with the object appearance of the source image but with motion from driving video:

- transfer the motion between the source image and each driving frame
- provide the generator the relative difference between keypoints

Learned Keypoints

Motion-supervised Co-Part Segmentation

• Siarohin, et al., "Motion Supervised Co-Part Segmentation", ICPR20

https://github.com/AliaksandrSiarohin/motion-cosegmentation

Self-supervised Co-Part Segmentation

Leverage motion info to train a segmentation network without annotation

- At training, use frame pairs (source and target) extracted from the same video => predict segments in target that can be combined with a motion representation between the two frames to reconstruct the target frame
- At inference, use the trained segmentation model to predict object parts segments

Self-supervised Co-Part Segmentation

- Segmentation Module predicts the segmentation maps $Y_{\rm S}$ and $Y_{\rm T}$, and the affine motion parameters
- Reconstruction Module: (1) computes a background visibility mask V and an optical flow F; (2) reconstructs the target frame X_T by warping the features of the source frame X_s and masking occluded features

Tai-Chi-HD

• Menapace, et al., "Playable Video Generation", CVPR21

https://github.com/willi-menapace/PlayableVideoGeneration

- Consider a set of videos depicting an agent acting in an environment
- Differently from other methods that use frame by frame action annotations, we assume no annotation is present

- Learn a model that represents the observed environment.
- Allow the user to input actions to the model through a controller at test time

• Produce a video where the agent acts according to the actions specified by the user