
Architecture

• First we sample an input sequence and use an encoder network to extract frame 
features



Architecture

• Use then pairs of successive features to infer the action that was performed by the 
agent in the corresponding transition using an action network



• Given the frame features and the action, a recurrent model is used to produce features 
representing the successive state

Architecture



Architecture

• The successive state is translated back to an image using a decoder network



Architecture

• For extra supervision, we encode back the produced frame using the encoder and the 
action network



Architecture

• Impose different self supervision losses on the frames, the frame features and the 
produced actions: use a mutual information maximization loss between actions and 
reconstructed actions as the main driving loss for action learning



Architecture

• The model is then unrolled over the whole sequence



ft etEmb

ft+1 et+1Emb

Action Network

• The action network first encodes the frame features using a Multi Layer Perceptron to 
produce two embeddings



etEmb

ft+1 et+1Emb

dt

Action Network

• We take the difference between these embedding as the representation of the 
transition between two frames: action direction dt

ft



dtt-SNE plot of

Action Network

• When visualized, the learned space of action 
directions is a representation of the different 
types of transitions that are observed in the 
training videos

f
t

etEmb

ft+1 et+1Emb

dt



MLP at

Which action is done
● Left
● Right

Action Network
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dtt-SNE plot of

• Use an MLP to assign a label to each point dt: the 
high-level action associated to the current frame

• Use of action variability embeddings to ensure a 
well-posed reconstruction loss on the frames



MLP at

vt

Expectation of distance from cluster centroids

Action Network

f
t

etEmb

ft+1 et+1Emb

dt

dtt-SNE plot of

Which action is done
● Left
● Right

How the action is done
● Speed
● Limb movement

• For each dt compute the expectation of its 
distance from the cluster centroids: variability 
embedding vt => the specific way in which an 
action is performed



Results

• We learn a wide range of actions. The meaning of actions is consistent, independently 
from the starting frame the action is applied to



Action Interpolation

• At inference, we typically pose vt = 0 and let the user specify actions at at each time step
• vt can also be obtained from an action direction dt that moves between the centroids of 

different actions: it is possible to generate a variety of different movement directions, eg. 
diagonal movements





Playable Environments

• Menapace, et al., “Playable Environments: Video Manipulation in Space and Time”, CVPR22

https://github.com/willi-menapace/PlayableEnvironments

https://github.com/willi-menapace/PlayableEnvironments


Playable Environments

• Learn a model that represents the observed environment
• Allow the user to input actions to the model through a controller at test time



Playable Environments



Playable Environments



Playable Environments



Framework



Framework Characteristics

1. Playability



1. Playability

2. Multi Object

3. Deformable Objects

Framework Characteristics



1. Playability

2. Multi Object

3. Deformable Objects

4. Camera Control

Framework Characteristics



1. Playability

2. Multi Object

3. Deformable Objects

4. Camera Control

5. Style Control

6. Robustness

Framework Characteristics



Learned Actions



Learnable Game Engines (LGEs)

• Menapace, et al., “Plotting Behind the Scenes: Towards Learnable Game Engines”, arxiv 2023

• Menapace, et al., “Promptable Game Models: Text-guided Game Simulation via Masked Diffusion Models”, ACM ToG 2024

https://learnable-game-engines.github.io/lge-website/

https://learnable-game-engines.github.io/lge-website/


Related Work



Method

Two separately trained components: 



Method



Synthesis Module

• NERF-based: renders the state of the environment from a 
given viewpoint 

• A composition of NERFS, one for each object

• The model is trained using L2 and perception 
reconstruction losses



Animation Module
• Diffusion-based: produces sequences of states based on 

conditioning signals
• Values: pose, location, velocity of a player or the ball

• Natural language: what a player is doing



Animation Module
• The conditions are optional: the model can be used at 

inference time for different task by changing the structure 
of the conditioning



Animation Module
• The model is based on a transformer architecture where 

a frozen T5 encodes the natural language conditioning

• A mask specifies which part of the input serves as 
conditioning and which needs to be predicted



Animation Module

• Finally, the model is trained to predict noise applied to 
the sequence



Controllable Synthesis



Text-Controllable Animation

Learnable Game Engines: 

• Understand physics and game logic

• Can receive action inputs expressed with natural language



Text-Controllable Animation



Designing Game Strategy



Making the player win: 

• Reconstruct the scene

Designing Game Strategy

• Devise winning actions

• Animate players

• Render the results



Designing Game Strategy



Original video = Bottom player loses
½ Original video + “The [TOP] player 

doesn’t catch the ball”= 

Bottom player wins

Designing Game Strategy



Play LGEs as Videogames



Constrain generation using: 

• Desired values of the environment states

• Actions expressed with natural language

Director’s Mode



Director’s Mode

First Frame Last Frame



Director’s Mode



Director’s Mode

The conditioning is 
flexible, e.g., give multiple 
actions to constrain the 
solution 



LGE Datasets

• 7112 video sequences at 1920x1080@25fps
• 15.5 hours of videos
• 1.12M fully annotated frames
• 25.5k unique captions

Tennis

• 61 video sequences at 1024x567@20fps
• 1.2 hours of videos
• 68.5k fully annotated frames
• 1.24k unique captions

Minecraft



LGE Datasets



Synthesis Model Evaluation

Learnable Game Engines Playable Environments

• Increased resolution
• No checkerboard artifacts 



Synthesis Model Evaluation

Learnable Game Engines Playable Environments

• Increased resolution
• No checkerboard artifacts 



Animation Model Evaluation

Learnable Game Engines Playable Environments

• Higher quality and higher frame rate sequences
• Better scene dynamics



Beyond Playable Environments

• Can we generate large scenes with manipulable objects inside?

• Can we do that without object localization and camera calibration?

• This environment representation can be used to model complex games with 
many objects and large environment



Beyond Playable Environments

A Corgi dog riding a bike in Times Square 
wearing sunglasses and a beach hat

A cowboy panda riding on the back of a 
lion, hand-held camera

Menapace, et al., “Snap Video: Scaled Spatiotemporal Transformers for Text-to-Video Synthesis”, CVPR24



Music-Guided Dance Video Synthesis



DanceGAN



Music-Guided Dance Video Synthesis



Demo

Real

Ours

Ballet

Real

Ours

K-pop Popping

Real

Ours



Where Are We Going Now …

● Incorporating 3D information

● Modeling complex interactions between actors and 

between actors and the scene

● Cross-modal seamless integration between text, audio, 

and visual information

● More attention to bias, privacy, and deep fakes detection

● …



Bias in Text-to-Image Models

A picture of a person in the kitchen

Stable Diffusion XL



A picture of a person in the kitchen

Stable Diffusion XLchef

Bias in Text-to-Image Models



Text-to-image generative 

models may exhibit 

unexpected biases

• Given an attribute agnostic 

prompt

• The model may generate 

images with specific attributes 

(low diversity)

Bias in Text-to-Image Models



The increase usage of AI models raises ethical and fairness 
concerns

● Is the model performing well regardless of specific protected 
characteristics?

○ e.g., Age, Skin Color, Gender…

What is fairness in AI?

● The behavior of a deep learning model may exhibit biases against 
specific minority groups
○ The bias may be directly inherited from the training data

● We refer to fairness as the ability of the model to perform equally 
regardless of the protected characteristic

Fairness in AI



Task description:

● Given an image of a face
● Classify specific facial attributes

○ e.g., Straight Hair, Big Nose, etc.

[1] S. Jung, et al. Learning fair classifiers with partially annotated group labels, CVPR22
[2] P. Stock, M. Cisse. Convnets and imagenet beyond accuracy: Understanding mistakes and uncovering biases, ECCV18
[3] L. A. Hendricks, et al. Women also snowboard: Overcoming bias in captioning models, ECCV18
[4] Z. Wang, et al. Towards fairness in visual recognition: Effective strategies for bias mitigation, CVPR20

The nature of the facial attributes may lead to 
unbalanced training sets:

● e.g., specific facial features may be more prone for specific 
protected characteristics

A classifier trained on such data will exhibit or amplify 
the training set bias [1,2,3,4]

Bias in Face Attribute Classification



Existing generative bias mitigation methods train generators 
from scratch[5,6,7]

● Requires domain specific data
● Hard to train (low quality)

[5] D. Xu, et al. FairGAN: Fairness-aware generative adversarial networks, 2018
[6] S. Dash, et al. Evaluating and mitigating bias in image classifiers: A causal perspective using counterfactuals, WACV22
[7] F. Zhang, et al. Fairness-aware contrastive learning with partially annotated sensitive attributes, ICLR23.
[8] M. D’Incà, et al. Improving Fairness using Vision-Language Driven Image Augmentation, WACV24

Explore the usage of pre-trained generative models[8]

● Balance the original training-set
● Training-free method
● Data-collection free method

Main challenge:
● The generator is itself biased 

○ May not capture minority groups

Bias Mitigation - Use Pre-trained Generative Models



[9] K. Preechakul, et al. Diffusion autoencoders: Toward a meaningful and decodable representation, CVPR22
[10] C. Tzelepis, et al., ContraCLIP: Interpretable GAN generation driven by pairs of contrasting sentences, 2022

Make a biased dataset fairer 
by augmenting it with 
generated images[9]:

● These images depict the 
desired protected 
characteristic (e.g., dark 
skinned people)

● They could be manipulated by 
a text-driven augmentation 
module (ContraCLIP [10])

Bias Mitigation - Use Pre-trained Generative Models



The generator bias may be overcome by:
• Augmenting the generated images towards the desired protected 

characteristic (e.g., old)

Pipeline:
• Compute statistics on the biased training set
• Identify the minority protected characteristic (e.g., dark skin tone)
• Augment generated images towards the desired protected 

characteristic
• The classifier is made fairer by fine-tuning on original and augmented 

synthetic data

Overcome the Generator Bias



Overcome the Generator Bias



[9] K. Preechakul, et al. Diffusion autoencoders: Toward a meaningful and decodable representation, CVPR22
[10] C. Tzelepis, et al., ContraCLIP: Interpretable GAN generation driven by pairs of contrasting sentences, 2022

Find paths lying in the 
semantic space
● By leveraging natural language

Paths characteristics:
● Describe one protected 

characteristic
● When traversed convey the 

desired augmentation
● Edit only the specific facial 

attribute
○ Path disentanglement

Augmentation Module



Age

Skin Color

Young Old

White Black

Qualitative Results



Assumptions and limitations:

● The learnt latent paths convey the desired manipulation while 
preserving the downstream attribute (disentanglement)
○ We attempt to impose the orthogonality of the paths by employing a 

contrastive loss which improves their disentanglement

● A good pseudo-labelling module is employed
○ Accuracy remains stable across different settings, suggesting the 

method is robust even when using a simple pseudo-labelling module

● Our method requires a generator with an editable space, pre-
trained on data where the attributes to be manipulated are well-
represented

Discussion



Foundation models are becoming increasingly popular:
● Trained on high volume data

○ Capable of SOTA performance on multiple tasks

● They cover natural language (e.g., ChatGPT) and multimodal (e.g., 

LLaVA) domains

Bias detection in text-to-Image is still an open question:
● So far, we focused on closed-set of biases 

● The models may exhibit novel biases previously uncovered

Can we use foundation models to propose and detect 
biases?

Bias Detection via Foundation Models



● OpenBias: discovering 
biases of T2I generative 
models in an open-set 
setting

● We do not require a 
predefined list of biases 
but propose a set of 
novel domain-specific 
biases

M. D’Inca, et al. OpenBias: Open-set Bias Detection in Generative Models, CVPR24

Bias Detection via Foundation Models



Three stage pipeline:
Given a set of captions
● Propose biases via in-context learning on a Large Language Model 

(LLM)
● Generate the synthetic images with the target generative model G 

and the given captions
● Check the proposed biases via Vision Question Answering (VQA) 

on the synthetic dataset

Key Ideas



OpenBias



Novel discovered biases:
● Person-related biases
● Object-related biases
● Animal-related biases

Results
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